
Semi-analytical solution for heat transfer from a buried
pipe with convection on the exposed surface

Mo Chunga, 1, Pyung-Suk Junga, Roger H. Rangelb,*
aDepartment of Mechanical Engineering, Yeungnam University, 214-1 Dae-dong, Kyungsan 712-749, South Korea
bDepartment of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975, USA

Received 5 November 1998; received in revised form 30 January 1999

Abstract

The problem of heat transfer from a constant-wall-temperature pipe buried in a semi-in®nite solid medium with a
plane surface exposed to a ¯uid ¯ow is solved semi-analytically. Using a conformal mapping, the original semi-

in®nite physical domain is transformed into a ®nite rectangular domain. A singular Fredholm integral equation of
the second kind is derived and solved numerically to ®nd the temperature distribution for the solid. The total heat
¯ux Q from the exposed surface is expressed by modifying the conventional expression Q=kSDT to Q=ZkSDT,
where S is the conduction shape factor, k is the thermal conductivity of the solid, and DT represents the

temperature di�erence between the pipe wall and the surrounding ¯uid. The panel e�ciency Z and maximum surface
temperature are presented in terms of the Biot number and a geometric parameter, L/D. # 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

Heat transfer from an isothermal circular pipe to a

plane surface exposed to convective ¯uid motion (see

Fig. 1) is a classical heat conduction problem with a

wide range of practical applications. Pipes buried

underground to carry water or oil are analyzed by

many researchers to investigate the possibility of freez-

ing of the ¯uid. In Asian countries, direct heating of

residential ¯oor by buried pipes (for example the

Ondol system in Korea) is a popular form of space

heating. The concept of conduction shape factor is

widely used for steady-state heat transfer calculations

associated with constant-wall-temperature buried
pipes. The shape factor concept was introduced by
Langmuir [1] and a large volume of data has been
compiled for common geometrical con®gurations by

Sunderland and Johnson [2] and Hahne and Grigull [3]
among many authors. Most contemporary heat trans-
fer textbooks, for example Bejan [4], Holman [5],

Incropera and DeWitt [6], and Mills [7], devote a sec-
tion on multi-dimensional steady heat transfer based
on conduction shape factor.

The heat transfer rate for a multi-dimensional steady
system, where only two temperature limits are
involved, is calculated from

Q � kSDT �1�

where Q is the heat transfer rate per unit length, k is
the thermal conductivity of the solid, and DT is the

temperature di�erence between the two surfaces. The
shape factor for a buried pipe is [4±7]
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S � 2p
cosh ÿ1�L=a� : �2�

One important restriction imposed on this shape factor
formulation is that the surface of geometrical import-

ance should be maintained at constant temperature.
For buried pipe, this means that the convective heat
transfer from the exposed surface is in®nitely strong so
that the ¯uid temperature and surface temperatures are

the same. This restriction is obviously too strict for
many practical applications. The purpose of this study
is to investigate the e�ects of a ®nite heat transfer coef-

®cient on the exposed surface on the heat transfer rate
and temperature distribution, with the aim of provid-
ing a design criterion for heat transfer engineers.

2. Formulation

2.1. Assumptions

The following assumptions are made regarding the

heat transfer process involving a buried pipe with a
convective surface.

1. The process is steady.
2. The wall temperature of the pipe is uniform.
3. The convective heat transfer coe�cient for the

exposed surface is uniform across the surface.
4. The properties of the solid medium are constant.
5. The deep ground temperature is the same as the air

temperature.

2.2. Governing equations

The governing equation for the conduction process

is a Laplace equation. In terms of the dimensionless
temperature, y=(T ÿ Ta)/(Tw ÿ Ta), the energy
equation becomes

r2y � @ 2y
@x 2
� @

2y
@y2
� 0 �3�

The boundary conditions are

1. Constant temperature condition, y=1, along the
pipe wall.

2. Convective boundary condition,

hcy�x,0� � k�@y=@y� jy�0� 0, along the exposed sur-
face.

3. Symmetry condition, �@y=@x� jx�0� 0, at the center-

line.
4. Equilibrium temperature condition, y4 0 as x, y4
1, far away from the tube.

Nomenclature

a pipe radius
Bi the Biot number, Eq. (13)
a0 leading Fourier cosines series coe�cient

D pipe diameter, D=2a
g a function de®ned by Eq. (12)
h step size for numerical integration

hc convective heat transfer coe�cient
k thermal conductivity of solid medium
L distance between pipe center and ground surface, Fig. 1

Q total heat transfer from ground surface per unit length
Qmax maximum total heat transfer from ground surface per unit length
S the conduction shape factor
Ta ambient ¯uid temperature

Tw pipe wall temperature
DT TwÿTa

Greek symbols

f0 a parameter de®ned by Eq. (7)
F the unknown of integral equation, Eq. (17)
G a geometrical parameter, L/a
g a parameter,

��������������
G2 ÿ 1
p

Z the panel e�ciency, Eq. (29)
y normalized temperature, (TÿTa)/DT
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Fig. 1. Buried pipe with convective heat transfer from the exposed surface.

Fig. 2. Conformal mapping from physical domain to calculation domain [8].
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2.3. Coordinate transformation

The following conformal mapping is adopted to
transform the physical domain into a simpler calcu-

lation domain [8]

z � f� ic � F�z� � 1

p

"
ln

iz�
����������������
L2 ÿ a2
p

izÿ
����������������
L2 ÿ a2
p

#
: �4�

The real and imaginary parts are

f�x, y� � 1

2p
ln

"
x 2 � � yÿ

����������������
L2 ÿ a2
p

�2
x 2 � � y�

����������������
L2 ÿ a2
p

�2
#

�5a�

c�x, y� � 1

p

�
tan ÿ1

�
x

ÿy�
����������������
L2 ÿ a2
p

�
�

tan ÿ1
�

x

y�
����������������
L2 ÿ a2
p

��
: �5b�

This transformation maps the semi-in®nite physical
domain onto a rectangle as shown in Fig. 2. The lo-

cations of various surfaces can be identi®ed by the
numbers in circle in Fig. 3. The parameter f0, which
represents the size of the transformed domain, can be

found from the mapping relation. The pipe wall is a
circle whose equation is x 2 � � y� L=a�2 � 1. The
value of f on the circle is constant and that value can

be found

f0 �
1

2p
ln

L�
����������������
L2 ÿ a2
p

Lÿ
����������������
L2 ÿ a2
p �6�

when the relation for the circle is substituted in the

equation for f, i.e. Eq. (5b). Alternatively, Eq. (6) may
be written as [5]

f0 �
cosh ÿ1�L=a�

p
� 2

S
: �7�

From a grid generation point of view, the conformal
mapping not only produces a simple calculation
domain but it also preserves the original form of the
governing equation and the boundary conditions as

will be shown below. This transformation also concen-
trates grid points near the top of the pipe where
steeper gradients are expected.

The energy equation is transformed according to the
following chain rules for partial derivatives:

Tx � Tffx � Tccx

Fig. 3. Summary of governing equations and boundary conditions.
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Ty � Tffy � Tccy

Txx � Tfff
2
x � 2Tfcfxcx � Tccc

2
x � Tffxx � Tccxx

Tyy � Tfff2
y � 2Tfcfycy � Tccc2

y � Tffyy � Tccyy

Collecting terms for the original equation, a trans-

formed energy equation can be obtained

yxx � yyy � �f2
x � f2

y�yff � �c2
x � c2

y�ycc
� 2�fxcx � fycy�yfc � �fxx � fyy�yf

� �cxx � cyy�yc � �f2
x � f2

y��yff � ycc�:

The Cauchy±Riemann condition

fx � cy

fy � ÿcx

and the properties of a conformal mapping H2f=0
and H2c=0 are used in the above derivation. The

energy equation in the transformed domain is further
simpli®ed to

@ 2y

@f2
� @ 2y

@c2
� 0 �8�

since f 2
x+f 2

y is always positive for the calculation
domain. Fig. 3 summarizes the governing equation and

the boundary conditions for both domains.

2.4. Integral equation formulation

The transformed boundary conditions except for the
convective boundary condition on the ground surface

are of Sturm±Liouville type [9] owing to the coordinate
alignment at the boundaries. The convective boundary
condition at the ground surface before the transform-

ation is

hcy�x,0� � k
@y
@y

����
y�0
� 0: �9�

Using the chain rule of di�erential calculus and the
fact that @c/@y=0 along the line y=0 yield the follow-
ing relationship at the ground surface

@y
@y
� @y
@f

@f
@y
� @y
@c

@c
@y
� @y
@f

@f
@y
:

The metrics can be evaluated from the mapping re-
lation

@f
@y

����
y�0
� ÿ 2

����������������
L2 ÿ a2
p

p�x 2 � L2 ÿ a2� �
ÿcos pcÿ 1

pa
��������������
G2 ÿ 1
p

where the parameter

G � L

a
�10�

represents the geometric alignment of the pipe with

respect to the exposed surface. In the above equation,
the relation at the exposed surface

x �
����������������
L2 ÿ a2
p

tan

�
pc
2

�
is substituted to express the relation in terms of c. The
top boundary condition is transformed to

y�0, c� � g�c�
Bi

@y
@f

����
f�0
� 0 �11�

where the nondimensional function g(c ) is

g�c� � ÿ1� cos pc

p
��������������
G2 ÿ 1
p �12�

and Bi is the Biot number de®ned as

Bi � hca

ks

: �13�

It is worth noting that the transformed boundary con-

dition is not of Sturm±Liouville type because g(c ) is
not constant. As a consequence, direct application of
separation of variables based on orthogonal eigenfunc-

tions is not viable.
In this study, an integral equation is derived from

the convective boundary condition at the exposed sur-

face. The ®rst step is to construct the formal solution
of the form

y�f, c� � a0

�
1ÿ f

f0

�

� f
f0

�
X1
n�1

an sinh �ln�f0 ÿ f�� cos lnc:

�14�

This formal solution satis®es

1. The governing equation.
2. The boundary condition y(f0, c )=1 along the line

of f=f0.
3. (@y/@c )vc=0=0 along the lines of c=0.
4. Fourier cosine series requirement of a leading con-

stant a0.

Applying the boundary condition along c=1
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@y
@c

����
c�1
� 0

yields the eigenvalues

ln � np: n � 1, 2 . . . �15�

The only unknowns at this point are the coe�cients an
and one remaining condition is the boundary condition
along the exposed surface, Eq. (11). As noted earlier,
were the function g(c ) a constant, Eq. (11) could be

used to ®nd the coe�cients an with the aid of the
orthogonality properly associated with the eigenfunc-
tions.

The integral equation is derived by satisfying Eq.
(11). The partial derivative along the line f=0 of can
be found from Eq. (14), namely,

@y
@f

����
f�0
� 1ÿ a0

f0

ÿ
X1
n�1

anln cosh lnf0 cos lnc: �16�

If the unknown function is de®ned

F�c� � 1ÿ a0
f0

ÿ @y
@f

����
f�0

, �17�

Eq. (16) can be expressed as

F�c� �
X1
n�1

anln cosh lnf0 cos lnc:

Apparently, this is a typical Fourier cosine series

except that F(c ) is unknown. The coe�cients an can
be formally determined through Fourier cosine series

a0 �
�1
0

y�0, x� dx �18a�

an � 2

ln cosh lnf0

�1
0

F�x� cos lnx dx; n � 1, 2, . . .

�18b�

The boundary condition contains y(0, c ), which can
be evaluated as

y�0, c� �a0 �
X1
n�1

an sinh lnf0 cos lnc

�a0 �
X1
n�1

2 tanh lnf0

ln

�
�1
0

F�x� cos lnx cos lnc dx

�a0 �
X1
n�1

tanh lnf0

ln

�1
0

F�x�� cos ln�cÿ x�

� cos ln�c� x�� dx: �19�

Substituting Eqs. (17) and (19) into (11) and changing
the order of summation and integration yields a

Fredholm integral equation of the second kind [10]

a0 �
�1
0

F�x�
X1
n�1

tanh npf0

np
� cos np�xÿ c�

� cos np�x� c�� dx� g�c�
Bi

�
1ÿ a0
f0

ÿ F�c�
�
� 0:

�20�

A point to note is that the in®nite series in the kernel
of the integral equation is not convergent because the

sequence converges to 1/n (a harmonic series) as n
increases to in®nity where tanh npf04 1. Based on the
observation that the term tanh npf0 rapidly converges
to unity as n increases, the series is reorganized as a

sum of two series (Kummer's transformation [11])

X1
n�1

tanh npf0

np
cos np�x2c� �

X1
n�1

cos np�x2c�
np

�
X1
n�1

tanh npf0 ÿ 1

np
cos np�x2c�:

The ®rst sum on the RHS is added and subtracted in
this manipulation. The ®rst series on the right-hand
side can be analytically summed and the second one is

rapidly convergent as n increases. The function rep-
resentation for ®rst series is [12]

X1
n�1

cos np�x2c�
np

� ÿ ln�2f1ÿ cos p�x2c�g�
2p

:

�0< j x2c j <2�:

The kernel can be rewritten as

X1
n�1

tanh npf0

np
� cos np�xÿ c� � cos np�x� c��

� ÿ ln�2f1ÿ cos p�xÿ c�g�
2p

ÿ ln�2f1ÿ cos p�x� c�g�
2p

ÿ
X1
n�1

�
1ÿ tanh npf0

np

� � cos np�xÿ c� � cos np�x� c��
�
:

The logarithmic singularity of this expression can be
isolated utilizing the following series expansion
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ln�2f1ÿ cos p�x� c�g�
2p

� ln j x2c j
p

�

ln
p
2
� p�x2c�2

24
� p3�x2c�4

2880
� p5�x2c�6

181,440

�O�x2c�8: �21�

The singular kernels can be reorganized as by isolating
the singularities

ln�2f1ÿ cos p�x� c�g�
2p

� ln j x� c j
p

� ln j x� cÿ 2 j
p

�
�

ln�2f1ÿ cos p�x� c�g�
2p

ÿ ln j x� c j
p

ÿ ln j x� cÿ 2 j
p

�

and

ln�2f1ÿ cos p�xÿ c�g�
2p

� ln j xÿ c j
p

�
�

ln�2f1ÿ cos p�x� c�g�
2p

ÿ ln j x� c j
p

�
:

The terms on the RHS of the above expressions are
regular after the singularities are removed as can be
seen from the series expansion, Eq. (21). The integral

Eq. (20) can be conveniently written after singularities
are isolated

�1
0

KS�c, x�F�x� dx�
�1
0

KR�c, x�F�x� dx

� g�c�
Bi

F�c� ÿ g�c�
Bif0

� a0

�
g�c�
Bif0

ÿ 1

�
� 0

�22�

where the singular kernel is

KS�c,

x� � ln j xÿ c j
p

� ln j x� c j
p

� ln j x� cÿ 2 j
p

�23�

and the regular kernel including the series parts is

KR�c,x� �
�

ln�2f1ÿ cosp�xÿ c�g�
2p

ÿ ln j xÿ c j
p

�
�
�

ln�2f1ÿ cosp�x� c�g�
2p

ÿ ln j x� c j
p

ÿ ln j x� cÿ 2 j
p

�
�
X1
n�1

�
1ÿ tanh npf0

np

� � cos np�xÿ c� � cos np�x� c��
�
: �24�

The remaining task is to express the constant a0 in

terms of the unknown function F. From the Fourier
cosine series and the de®nition of F(c ), Eq. (17), it is
found that

a0 �
�1
0

y�0, x� dx � ÿ
�1
0

g�x�
Bi

@y
@f

����
f�0

dx

�
�1
0

g�x�
Bi

F�x� dx� a0 ÿ 1

f0Bi

�1
0

g�x� dx:

From this it follows that

a0 � 1

1� pgf0Bi
� pgf0

1� pgf0Bi

�1
0

g�x�F�x� dx �25�

where g �
��������������
G2 ÿ 1
p

. The following relation is used in
the above derivation�1
0

g�x� dx � ÿ 1

p
��������������
G2 ÿ 1
p :

Replacing a0 in Eq. (22), the integral equation can be
®nally written as�1
0

�KS�c, x� � KR�c, x� � KA�c, x��F�x� dx

� g�c�
Bi

F�c� � 1� pgg�c�
1� pgf0Bi

�26�

where the kernel KA(c, x ) associated with is de®ned as

KA�c, x� � pg�g�c� ÿ f0Bi �
1� pgf0Bi

g�x�: �27�

2.5. Numerical solution of the singular integral equation

The numerical quadrature on a uniform mesh with
arbitrary weight [13] is adopted to properly treat the
integration involving the singular kernel. The numeri-
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cal integration of a product of two functions, w(x ) and
f(x ) is represented as a sum of a product of a weight

and a function value over a four-point span as

�b
a

w�x� f�x� dx �
X4
i�1

Wif ��k� iÿ 1�h�

where h is the step size. The weight factor is found by

requiring the quadrature to be exact for 4 functions
f(x )=const, x, x 2, x 3

W1 � 1

6
��k� 1��k� 2��k� 3�M0 ÿ �3k2 � 12k� 11�M1

� 3�k� 2�M2 ÿM3�

W2 � 1

2
�ÿk�k� 2��k� 3�M0 � �3k2 � 10k� 6�M1

ÿ �3k� 5�M2 �M3�

W3 � 1

2
�k�k� 1��k� 3�M0 ÿ �3k2 � 8k� 3�M1

� �3k� 4�M2 ÿM3�

W4 � 1

6
�ÿk�k� 1��k� 2�M0 � �3k2 � 6k� 2�M1

ÿ 3�k� 1�M2 �M3�:

The moments of the weight function are given by

Mn � ÿ 1

hn

�b

a

xnw�x� dx

and should be evaluated analytically over the same
range of integration for a speci®c choice of w(x ). In
this study, the weighting function w(x ) for the singular

kernel is chosen in such a way as to suitably account
for the logarithmic singularity

w�x� � KS�c,x�

f �x� � F�x�:

The moments of the weighting function for this choice
are

M0 �
�x
c

log�cÿ t� dt � � log�cÿ x� ÿ 1��cÿ x�

M1 �
�x
c
t log�cÿ t� dt

� 1

4
�cÿ x��ÿ3cÿ x� 2�c� x� log�cÿ x��

M2 �
�x
c
t2 log�cÿ t� dt

� 1

18
�ÿ11c3 � 6c2x� 3cx2 � 2x3

� 6�c3 ÿ x3� log�cÿ x��

M3 �
�x
c
t2 log�cÿ x� dt

� 1

48
�ÿ25c4 � 12c3x� 6c2x� 4cx3 � 3x4

� 12�c4 ÿ x4� log�cÿ x��:

Most of mathematical analysis including the analytic

integration for the moments are performed using sym-
bolic software [14]. The numerical integration involving
the regular kernel is carried out by splitting the inte-
grand as a product of

w�x� � 1

f �x� � KR�c, x�F�x�:

This is equivalent to Simpson's 3/8 rule that has an ac-
curacy of O(h 5) and gives the following simple ex-

pressions for Wis

W1 � 3h

8
, W2 � 9h

8
, W3 � 9h

8
, W4 � 3h

8

where h is the step size. Since F is not known, the inte-

gral Eq. (26) results in a system of linear simultaneous
equations when the numerical quadrature scheme is
applied

AijFj � bi

where Aij is an n� n matrix and bj is a vector.

3. Results and discussion

3.1. Numerical performance

Two most important questions regarding the nu-
merical solution of the Weakly Singular Integral

Equation (WSIE), Eq. (26), are
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1. Does the solution of the WSIE represent the physi-
cal problem correctly?

2. Is the numerical scheme reliably robust?

The best way to answer the ®rst question is to ®nd the
solutions by independent methods and to compare

them. For this purpose, the energy equation was
directly solved in the transformed computational
domain (see Fig. 3) using an Alternating Direction

Implicit (ADI) based Finite Di�erence Method (FDM)
for a veri®cation of consistency. Actually, the FDM is
a good alternative solution method because the nu-
merical task is relatively simple on the transformed

domain. Fig. 4 shows the temperature distribution on
the exposed surface in terms of transformed coordi-
nates for various Biot numbers. The symbols represent

the FDM solution and the lines represent the WSIE
solution. The agreement between the two solutions is
very good. In the FDM solution, a 100� 60 grid sys-

tem is used and 1000±2000 ADI iterations are required
to reach the maximum iteration error of 10ÿ6. For the
same order of grid size, the CPU time for FMD was

more than 10 times that for SIE. The answer to the

second question can be found by a grid point conver-
gence test. Fig. 5 shows the convergence characteristics
of the numerical solution of the WSIE as a function of

the number of grid points. The number of grid points
tested are 21, 31, and 51 and the grid point conver-
gence is very good. The Biot number is 1 and L/D=3

for this particular test. Another advantage of using the
WSIE solution is the convenience of post processing.
In the WSIE solution, the temperature distribution

and heat ¯ux on the exposed surface at arbitrary lo-
cation can easily be evaluated once the function F(c )
is found from the solution of the integral equation
whereas the FDM solution needs interpolation.

Calculation results for the physical quantities of inter-
est such as the temperature distribution and heat ¯ux
distribution along the exposed surface, maximum tem-

perature on the surface are discussed in the next sec-
tion.

3.2. Total heat transfer rate form the surface

The total heat transfer rate from the ground surface

to the surrounding can be found by integration of the

Fig. 5. Grid point convergence characteristics for numerical solution of WSIE.
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local heat ¯ux over the entire exposed surface

Q �
�1
ÿ1
ÿ k

@T

@y

����
y�0

dx

� ÿkDT
�1
ÿ1

g�c� @y
@f

����
f�0

@x

@c

����
y�0

dc

� 2kDT
�1
0

@y
@f

����
f�0

dc: �28�

The following mapping relation is used here

@x

@c

����
f�0
� ÿ @y

@f

����
y�0
� ÿ 1

g�c� :

The total heat transfer from the exposed surface can
be expressed in a convenient form for design purposes.
Eq. (28) can be rearranged in terms of the shape factor

Q � 2kDT
�1
0

�
1ÿ a0
f0

ÿ F�c�
�

dc

� kSDT

 
1ÿ a0 ÿ f0

�1
0

F�c� dc
!
:

It will be useful to de®ne a panel e�ciency that com-
pares actual heat transfer with that for the case where
the surface temperature is constant

Z � Q

Qmax

� Q

kSDT
� 1ÿ

 
a0 � 2

S

�1
0

F�c� dc
!
: �29�

Next, the total heat transfer rate is conveniently recast
as

Q � ZkSDT: �30�

Physically, the panel e�ciency represents the ratio of
actual heat transfer rate to the maximum possible heat

transfer rate, which is attained when the Biot number
is in®nity. The panel e�ciency, Z, is a function of the
Biot number and the geometric parameter L/D. Fig. 6

shows the e�ciency curves as functions of the Biot
number for di�erent values of L/D. The panel e�-
ciency is a strong function of both the Biot number

and L/D and asymptotically approaches unity as the
Biot number becomes large regardless of the value of
L/D. Table 1 summarizes the numerical values of the
panel e�ciency.

3.3. Surface temperature distribution

In many applications such as panel heating systems,
the temperature distribution on the exposed surface is
very important because it is the primary factor that

a�ects human comfort. The temperature distribution
on the exposed surface can be found through Eqs. (11)
and (17)

Table 1

Panel e�ciency

G

Bi 1.5 2 3 4 5 6 8 10 12 14 16 18 20

0.001 0.111 0.144 0.186 0.215 0.238 0.257 0.288 0.313 0.335 0.354 0.371 0.386 0.400

0.01 0.140 0.193 0.266 0.320 0.362 0.398 0.456 0.500 0.537 0.568 0.594 0.617 0.638

0.05 0.215 0.302 0.416 0.494 0.553 0.598 0.666 0.715 0.751 0.779 0.802 0.821 0.836

0.1 0.272 0.379 0.511 0.596 0.656 0.701 0.763 0.805 0.835 0.857 0.874 0.888 0.899

0.2 0.350 0.476 0.620 0.704 0.758 0.797 0.847 0.879 0.900 0.915 0.927 0.935 0.943

0.3 0.405 0.541 0.686 0.764 0.812 0.845 0.886 0.911 0.928 0.939 0.948 0.955 0.960

0.5 0.486 0.628 0.764 0.830 0.869 0.894 0.925 0.942 0.953 0.961 0.967 0.971 0.975

1 0.607 0.743 0.853 0.900 0.925 0.941 0.959 0.969 0.975 0.980 0.983 0.985 0.987

1.5 0.680 0.803 0.893 0.929 0.947 0.959 0.972 0.979 0.983 0.986 0.988 0.990 0.991

2 0.728 0.840 0.916 0.944 0.959 0.968 0.978 0.984 0.987 0.990 0.991 0.992 0.993

3 0.791 0.883 0.941 0.962 0.972 0.978 0.985 0.989 0.991 0.993 0.994 0.995 0.996

4 0.830 0.908 0.954 0.971 0.979 0.984 0.989 0.992 0.994 0.995 0.996 0.996 0.997

5 0.856 0.924 0.963 0.976 0.983 0.987 0.991 0.993 0.995 0.996 0.996 0.997 0.997

6 0.876 0.935 0.969 0.980 0.986 0.989 0.993 0.995 0.996 0.997 0.997 0.997 0.998

7 0.891 0.944 0.973 0.983 0.988 0.991 0.994 0.995 0.996 0.997 0.997 0.998 0.998

8 0.902 0.950 0.976 0.985 0.989 0.992 0.994 0.996 0.997 0.997 0.998 0.998 0.998

10 0.919 0.959 0.981 0.988 0.991 0.993 0.996 0.997 0.997 0.998 0.998 0.999 0.999

25 0.965 0.983 0.992 0.995 0.997 0.997 0.998 0.999 0.999 0.999 0.999 0.999 1.000

50 0.982 0.991 0.996 0.998 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000

75 0.988 0.994 0.997 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

100 0.991 0.996 0.998 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Fig. 7. Biot number e�ect on surface temperature.

Table 2

Maximum surface temperature

G

Bi 1.5 2 3 4 5 6 8 10 12 14 16 18 20

0.001 0.994 0.977 0.945 0.918 0.896 0.877 0.847 0.822 0.800 0.781 0.765 0.749 0.735

0.01 0.987 0.960 0.905 0.857 0.816 0.781 0.721 0.673 0.633 0.598 0.567 0.540 0.516

0.05 0.961 0.904 0.798 0.714 0.646 0.591 0.505 0.441 0.392 0.352 0.320 0.293 0.271

0.1 0.932 0.848 0.709 0.606 0.529 0.469 0.382 0.321 0.277 0.243 0.216 0.194 0.176

0.2 0.881 0.761 0.588 0.475 0.397 0.340 0.263 0.213 0.178 0.153 0.133 0.118 0.106

0.3 0.836 0.693 0.506 0.394 0.320 0.269 0.202 0.160 0.132 0.112 0.097 0.085 0.076

0.5 0.761 0.591 0.398 0.295 0.233 0.191 0.139 0.108 0.087 0.073 0.063 0.055 0.048

1 0.625 0.436 0.263 0.184 0.140 0.112 0.078 0.060 0.048 0.040 0.034 0.029 0.026

1.5 0.532 0.347 0.197 0.134 0.100 0.079 0.055 0.041 0.033 0.027 0.023 0.020 0.017

2 0.463 0.288 0.158 0.106 0.078 0.061 0.042 0.032 0.025 0.021 0.017 0.015 0.013

3 0.369 0.216 0.113 0.074 0.054 0.042 0.029 0.021 0.017 0.014 0.012 0.010 0.009

4 0.307 0.173 0.088 0.057 0.042 0.032 0.022 0.016 0.013 0.011 0.009 0.008 0.007

5 0.263 0.145 0.072 0.047 0.034 0.026 0.018 0.013 0.010 0.008 0.007 0.006 0.005

6 0.230 0.124 0.061 0.039 0.028 0.022 0.015 0.011 0.009 0.007 0.006 0.005 0.005

7 0.205 0.109 0.053 0.034 0.024 0.019 0.013 0.009 0.007 0.006 0.005 0.004 0.004

8 0.184 0.097 0.047 0.030 0.022 0.017 0.011 0.008 0.007 0.005 0.005 0.004 0.003

10 0.154 0.079 0.038 0.024 0.017 0.013 0.009 0.007 0.005 0.004 0.004 0.003 0.003

25 0.069 0.034 0.016 0.010 0.007 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001

50 0.036 0.017 0.008 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001

75 0.024 0.012 0.005 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000

100 0.018 0.009 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000
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y�0, c� � ÿ g�c�
Bi

@y
@f

����
f�0

�ÿ g�c�
Bi

�
1ÿ a0
f0

ÿ F�c�
�
: �31�

All the quantities including the coe�cient a0 can be

easily evaluated once F(c ) is found.
Fig. 7 shows the e�ect of the Biot number on the

surface temperature distribution. The surface tempera-

ture rise above the surrounding ¯uid temperature
increases as the Biot number becomes smaller. Larger
Biot numbers make the surface temperature more uni-
form and, as expected, the surface becomes an iso-

therm when the Biot number goes to in®nity. Fig. 8
shows the maximum temperature on the exposed sur-
face, which occurs directly above the center of the

pipe, as a function of the Biot number and L/D. The
maximum temperature is a strong function of both the
Biot number and the geometrical parameter L/D. As

the Biot number goes to zero, the maximum tempera-
ture approaches the pipe surface temperature. The
maximum surface temperature is tabulated in Table 2.

3.4. Temperature distribution in the solid

The temperature ®eld in the solid may be found by

evaluating the series:

y�f,c� � a0

�
1ÿ f

f0

�
� f

f0

�
X1
n�1

an sinh �ln�f0 ÿ f�� cos lnc

�32�

with the coe�cients of the series obtained as a cosine
series with a known surface temperature distribution,
y(0, x ). The coe�cients are simply

an �

�1
0

y�0, x� cos npx dx

sinh npf0

; n � 1, 2, . . . �33�

The following inverse transform relation is useful to

express the temperature distribution in terms of physi-
cal coordinate system

F ÿ1�z� � x� iy � i
����������������
L2 ÿ a2
p

�epz ÿ 1�
epz � 1

: �34�

Fig. 8. Maximum surface temperature curves.
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A typical example of temperature distribution is shown
in Fig. 9 in the physical coordinate system.

4. Conclusions

Conduction heat transfer from the isothermal sur-
face of a buried circular tube is analyzed to investigate
the e�ects of ®nite convective heat loss from the
exposed ground surface. The original physical domain

is transformed into a rectangular one through a con-
formal mapping and a singular integral equation is de-
rived by imposing the convective heat transfer

boundary condition for the exposed surface. This
singular integral equation is then numerically solved to
®nd the temperature distribution in the solid, and on

the surface. The numerical scheme is e�cient in the

sense that it requires minimal computational e�orts
and it is robust in the sense that it does not give rise
to any numerical problems such as divergence or

instability. The total heat transfer rate from the pipe
to the surrounding ¯uid is evaluated. The calculation
results for the total heat transfer rate are presented by

introducing the concept of panel e�ciency that com-
pares the actual heat transfer rate with the maximum
possible one. Using a conventional shape factor, the
heat transfer rate is cast into a useful form for design

purposes. The panel e�ciency and the maximum sur-
face temperature are presented as functions of the Biot
number and the geometrical parameter L/D. Both

panel e�ciency and maximum surface temperature are
strong functions of these two nondimensional par-
ameters implying that a constant surface temperature

assumption can lead to signi®cant calculation errors.

Fig. 9. Typical temperature distribution in solid.
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